If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+64x+20=0
a = 4; b = 64; c = +20;
Δ = b2-4ac
Δ = 642-4·4·20
Δ = 3776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3776}=\sqrt{64*59}=\sqrt{64}*\sqrt{59}=8\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{59}}{2*4}=\frac{-64-8\sqrt{59}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{59}}{2*4}=\frac{-64+8\sqrt{59}}{8} $
| 200-4x-x=x-16 | | 4+5n=2n=22 | | 6x+100+x=2x+200 | | 7d+15=2d-10 | | 0.06(6t-3)=0.36(t-4)+1.26 | | 0.14(y-4)+0.12y=0.20y-0.5 | | X2+y2=212 | | 3x-18+2x+8+37=180 | | w−5.9/3=2.6 | | w−5.93=2.6 | | p−17/2=1 | | 0.16(y-6)+0.10y=0.18y-0.3 | | 7.5m+30=0 | | 7+4r=13 | | s/3+ 9=11 | | -6x+11=4x+8 | | 1/2(6x+4=x+2(x+1) | | 22x-44=0 | | 5Xx2=X-1 | | 1.1x=20000000 | | 1/2×+1/4y=3y | | 2/3+1/6q=3/6q+1/3 | | 5x-11=5x+12 | | -36=4(y-6)-8y | | F(x)=5/0x | | 2x2-19=0 | | 2n+50=n+50 | | 5/w=3 | | 5.x-7=-3 | | 2-(4y-5)=18 | | 9=9/h | | 0.15(y0.2)=20.5(1y) |